1. Sketch the electric field surrounding a positive charge.

2. Sketch the electric field surrounding a negative charge.

- 3. Consider the electric field 0.50 metres away from a 25 μ C point charge.
 - a. Will the field's direction be towards or away from the charge?

Away

b. What is the field strength?

$$E = \frac{k_{Q}}{c^{2}} = \frac{8.988 \times 10^{4} \frac{N \cdot m}{c^{2}} \times 25 \times 10^{-6} C}{(0.50 m)^{2}}$$

$$= 8.988 \times 10^{4} \frac{N \cdot m}{c^{2}} \times 25 \times 10^{-6} C$$

$$= 8.988 \times 10^{4} \frac{N \cdot m}{c^{2}} \times 25 \times 10^{-6} C$$

- 4. Consider the electric field 1.5 metres away from a $-50.0 \,\mu$ C point charge.
 - a. Will the field's direction be towards or away from the charge?

b. What is the field strength?

$$E = \frac{8.988 \times 10^{9} \times 50 \times 10^{6}}{1.5^{2}}$$

$$= 2.0 \times 10^{5} \text{ N/c}$$

5. When we dealt with gravity, the gravitational field strength was equal to the acceleration due to gravity. Why is this not true about the electric field strength?

gravity is
$$N_{kg}$$
 since $N = \frac{kg \cdot m}{5^2}$
 $\frac{N}{K_1} = \frac{kg \cdot m}{5^2} = \frac{kg \cdot m}{5^2}$ which is acceleration for electric field it depends on both mass and charge

6. A 2.5 μ C charge experiences a 3.52 N electric force in an electric field. What is the strength of the electric field?

$$E = \frac{F_E}{q} = \frac{3.52 \,\text{N}}{2.5 \times 10^{-6} \,\text{C}}$$
$$= 1.4 \times 10^6 \,\text{N}_{\text{C}}$$

7. A $-61.2 \,\mu$ C charge experience a 6.23 N electric force in an electric field. What is the strength of the electric field?

$$E = \frac{F_E}{q} = \frac{6.23N}{61.2 \times 10^6 c} = (1.02 \times 10^8 N)$$

7900

8. A 0.25 kg object with a charge of $56 \mu C$ is in a 7.9 N/C electric field. What is the acceleration of the object?

$$F_E = E_a = 7900 N \times 56 \times 10^6 C = 0.4424 N$$

$$\alpha = \frac{F_{\text{net}}}{M} = \frac{0.4424 N}{0.25 kg} = 1.8 \frac{m}{s^2}$$

9. At a distance of 1.25 metres from a point charge the electric field strength is 560 N/C. This is the a. At what distance will the field strength be 750 N/C?

$$\frac{E}{k^2} \rightarrow \frac{E}{k^2} = q \rightarrow \frac{560(1.25)^2}{8.188 \text{ kg}} = \frac{9.7352 \times 10^{-8}}{4.188 \text{ kg}} = 1.1 \text{ kg}$$

b. At what distance will the field strength be 2.5 N/C?

c. At what distance will the field strength be 0.44 N/C?

F	lectric	Field	s Pra	actice

Name:

10. A $+25 \mu C$ and a $-45 \mu C$ point charge are 4.0 metres apart. What is the strength and direction of the electric field:

a. 1.0 metres from the +25 μ C charge?

In to 25 moons

strength from 25pc is 8.498×101×25×10= = 2.247×10 ower

3m from -45 charge

Strength From -45 is 8.988 × 109 × 45 × 106 = 4.494 × 104

Total is $2.247 \times 10^{5} + 4.494 \times 10^{4} \Rightarrow 2.7 \times 10^{5} \text{ M}$ o. 2.0 metres from the +25 μ C charge?

Charge

Charge

b. 2.0 metres from the +25 μC charge?

from 25, C

5.6175×104

From-450C + 1.011x105

1.6 × 10 5 N + towards - 450 C

c. 3.0 metres from the +25 μ C charge?

From 2546 2 4967x109

From-450C + 4.0446×10'

4. 3 × 10 N + towards - 45 pC charge

F	ectr	ic	Fie	ldc	Pra	ctice

N I		
Name:		
ivaiiic		

11. A $+25 \mu C$ and a $+45 \mu C$ point charge are 4.0 metres apart. What is the strength and direction of the electric field:

a. 1.0 metres from the +25 μC charge? winer (3) =

From 25μC charge: 2.247x102 are towneds 45,C

from 45pc charge: 4.494x104 +owards 25pc

m 45pc charge: 4.494x10.

Total is 2.247x105-4.494x104 = (1.8 N/c touris 45pc charge

b. 2.0 metres from the +25 μ C charge?

From 25pC 5.6175x104

From 4Spc 1.011x105 (- winner

Total is 1.011x105-5.6175x104 = 4.49 × 10 N towards 25pc charge

c. 3.0 metres from the +25 μ C charge?

From 25pc 2.4969×104

From -45 4.0446 x105 (Winner

Total is

4.0446×105-24967×104

= 3.8 × 10 N towards 25 NC charge

12. A 3.0 μ C and a $-4.0~\mu$ C charge are 2.6 metres apart. What is the strength and direction of the electric field halfway between the two charges?

Both point towards -4NC charge

13. What is the strength and direction of the electric field 3.7 metres to the East of a 9.0 μ C charge and 4.6 metres to the North of a 8.0 μ C charge.

3.7_m

From 8pc charge:

3.398 x103 N/c

14.

a. What is the strength and direction of the electric field 0.23 metres to the West of a $65 \,\mu C$ charge, and 0.82 metres to the North of a $-94 \mu C$ charge?

From 65pl: 1.104x1074 From 94NC: 1.257×106N/8

b. If a 2.0 μ C charge was placed in that location what would be the electric static force

b. If a 2.0
$$\mu$$
C charge was placed in that location what would be the electric static force (magnitude and direction) acting on it?

$$F_{E} = F_{Q} = (1.1 \times 10^{7}) \times 2 \times 10^{-6} = 22 \text{ N}$$

$$6.5^{\circ} \text{ South}$$
of West

c. If a $-2.0~\mu C$ charge was placed in that location what would be the electric static force (magnitude and direction) acting on it?

are reversed

22N, 6.5° North of East