Note Booklet #1: Physics Skills

Scientific method

A hypothesis is a possible explanation for some phenomenon. The difference between a hypo	thesis and
a guess is that a hypothesis must make a testable prediction. T	here must
be some Experiment we could perform to test our hypothesis.	

Example: A ball is rolled away from someone, but it then rolls back to the experimenter.

Hypothesis #1: I put back spin on it

Predication: If thrown without backspin it will not come back

Hypothesis #2: The Floor is slanted

Predication: If rolled the other direction it will normally

Hypothesis #3: It bounced off a bolall

Predication: If rolled without a wall it will keep going.

Positive and Negative Powers of 10

Exponential Form	As a multiplication	Standard Form
10 ⁵	10×10×10×10×10	\$00,000
104	10×10×10×10	10,000
10 ³	10×10×10	1000
102	10×10	100 2:10
10 ¹	10	10 2:10
100		1 2:10
10 ⁻¹	<i>t</i> ÷10	0.1
10^{-2}	[÷ 102 = 1 ÷ 100	0.01
10 ⁻³	1 - 103 = 1 - 1000	0.001
10 ⁻⁴	1=104=1=10000	0.0001
10 ⁻⁵	1 = 10 ⁵ = 1 = 100000	0.00001

Scientific Notation

We use scientific notation to simplify the writing of very large or very small numbers. As a rule of thumb in this class you should use scientific notation for all numbers greater than 1000 and less than 0.01.

Scientific notation consists of a number between $\frac{1}{2}$ and $\frac{10}{2}$ that is multiplied by a power of 10.

Which of the following are written in scientific notation?

 5×6

 54×10^3

 5×10^3

 5.3×10^{-3}

 0.26×10^{19}

 1.996235×10^3

Write "0.00045 grams" in scientific notation

4.5 x 10 grams

Write "2,562,000 seconds" in scientific notation

2.562 x 10 seconds

Write "260.9 mL" in scientific notation

2.609 x 10 mL

Write " 4.355×10^6 mL" in standard notation

4355000 mL

Write " 9.46×10^{-5} seconds" in standard notation

0.0000946 seconds

Write " 4.1×10^{-4} litres" in standard notation

0.00041 litres

Operations with scientific notation

The easiest method to work with numbers in scientific notation is to use your calculator. Most calculators have a button such as "Exp" which means \times 10 to the power of.

For example, on my calculator 9 [Exp] 3 = 9000.

Use your calculator to determine the solution to the following and express it in scientific notation:

$$(5.1 \times 10^{-5})(2.9 \times 10^{9}) = 147900 = 1.48 \times 10^{5}$$

$$\frac{5.36 \times 10^{-3}}{19} = 0.000282$$

$$2.82 \times 10^{-4}$$

$$3.5 \times 10^{4} + 9.52 \times 10^{3} = 44520$$

$$7.5 \times 10^9 - 1.532 \times 10^{10} = -78200000000$$

