- 1. Roughly sketch
 - a. A line with positive slope

b. A line with negative slope

c. A line with 0 slope

2. Match

a. A line with positive slope and y intercept of 5.

b. A line with negative slope and y intercept of 5.

c. A line with positive slope and y intercept of 10.

d. A line with zero slope and y intercept of 10.

f. A line with negative slope and y intercept of 10.

3. Determine the slope of each of the following lines (remember slope = $\frac{rise}{run}$), write as a fraction.

 $5 \log e = \frac{rise}{rvn} = \frac{3}{1} = 3$ $= \frac{9}{3} = 3$ $= \frac{3}{1} = 3$

b. Slope = rise = -3 = -6 = -8

Slope = $\frac{rise}{run} = \frac{2}{3}$

* Any colculation of rise between 2 points gives the same slope

4. Determine the equation for each of the following lines in the form y = mx + b. Remember the m parameter is the slope and the b parameter is the y – intercept. (Round slope to 2 sig figs)

*** NOTE that the way the graphs are cropped the grid lines may the y-values look like they have negatives in front of them, all the y-values are positive.

a.
$$Slape = \frac{r.se}{run} = \frac{4}{8} = \frac{1}{2} = 0.50$$

= 0.50 -7 -6 -5 -4 -3

Slope =
$$\frac{\text{cise}}{\text{con}} = \frac{-3}{2} = -1.5$$

5. For each graph, two points are shown, what is the slope of the line connecting those two points? (Round to 2 sig figs)

a.

Slope =
$$\frac{rise}{rvn} = \frac{3}{10} = 0.30$$

Slope =
$$\frac{rise}{con} = \frac{-30}{10} = \frac{-3.0}{10}$$

Name:_____

6. The distance a person has driven is graphed below.

a. What is the independent variable, and what units are used for it?

Independent is on x-axis: (Time

Time, hours are the units

b. What is the dependent variable, and what units are used for it?

Dependant is on y-axis: Distance, Km one the units

c. How far has the person travelled after 2 hours? Be sure to include units.

150 Km)

d. What is the equation for this relation with units included? Use the variable d for distance travelled and t for time.

Slope = 150 km = 75 km

$$d = 75 \frac{k_m}{hr} +$$

y-int = 0

e. Use your equation to determine how far the person would have travelled after 6.25 hours.

 $d = \left(75 \frac{k_m}{hr}\right) \left(6.25 hr\right)$

Name:_____

7. The amount of beans a person can buy with x amount of money is graphed below:

a. How much beans can they buy with \$2?

800g roms

b. Determine an equation for this relation with units. Use the variable B for amount of beans and m for money.

Slope =
$$\frac{rise}{run} = \frac{8009}{12} = \frac{4009}{1}$$
 $y = int = 0$

c. Rearrange the equation so that money is the subject.

$$B = \frac{4009}{5} m \rightarrow B = \frac{4009}{4009} \rightarrow \frac{B B}{4009} = m$$

d. Use the equation from c to determine the cost of 6.3×10^6 grams of beans.

Name:_____

8. An experimenter measures the force they apply to a ball and the distance the ball travels before it stops. They get the following data:

Force (N)	Distance
	(cm)
50 N	25 cm
100 N	50 cm
150 N	75 cm
250 N	125 cm

a. Plot the points on the graph above, draw a line, and determine an equation for the relationship with units.

Slope =
$$\frac{rise}{run} = \frac{25cm}{son} = 0.50cm$$

$$d = \left(0.50 \frac{\text{cm}}{\text{N}}\right)$$

b. Use your equation to determine the distance the ball would travel if you applied 572 N of force.

c. Rearrange the equation so that force is the independent variable.

$$d = (0.50 \frac{cn}{N}) F \rightarrow$$

Multiply by Notations divide by 0.50 cm

$$\rightarrow \left(\frac{dN}{0.50cm} = F\right)$$

d. Use the equation from c to determine the force required so the ball travels 65 cm.

$$F = \frac{(65 cm) N}{0.50 cm} = 130 N$$

9. Below is a scatter plot of the distance an object travels as a function of time.

* Your line

a. Draw a line of best fit on the graph and use it to determine an equation for the relation. Be sure to include units in both your slope and y intercept. Use the variable d for distance and t for time.

Slope = $\frac{rise}{run} = \frac{15m}{10sec} = 1.5\frac{m}{sec}$ y - int = 3.5m

b. Use your equation to determine the distance the object will travel after 79 seconds.

Name:_____

10. Sal is a handy-person and changes various amounts for different projects. They have recorded the amount they changed and the hours spent working on various projects.

a. Draw a line of best fit on the graph and determine an equation for it with units. Choose appropriate variables for amount charged and time working on the project.

Slope=
$$\frac{3770}{35\text{hr}} = \frac{133}{\text{hr}}$$

b. Looking at the equation from a, about what does Sal charge per hour on average?

c. Using your equation how much would you expect Sal to charge for a project that takes 56 hours?

$$C = \left(\frac{122}{\mu r}\right) \left(\frac{56 \, \mu r}{56 \, \mu r}\right) = 1232$$

d. Rearrange your equation so that time is the subject.

e. Use your equation from d to determine how long Sal would be expected to work on a project with cost of \$850?