1. Match the following velocity time graphs with descriptions of the motion.

Graph	Description
a) constant positive velocity time C constant negative velocity	A: Starts moving in the negative direction, slows to a stop and accelerates in the positive direction.
accelerator B I ine B	B: Starts at rest, accelerates in the positive direction, and then slows to a stop.
storts at accelerates	C: Starts moving with a constant velocity in the positive direction, immediately turns around the starts moving with the same speed in the negative direction
tine Slows to a stop	D: Starts at rest and accelerates in the positive direction
storts with regative velocity	

Name:_____

2. Sketch a velocity time graph, with values labelled for each of the following situations:

b. An object starts at rest and accelerates at a constant rate to a velocity of 15.0 m/s after 15 seconds.

c. An object moves in the negative direction for 5 seconds at -5.0 m/s, then instantaneously stops and remains at rest for 5 seconds, then moves in the positive direction at 5.0 m/s for 5 seconds.

Name:_____

3. For each of the position time graphs shown, sketch a velocity time graph with values labelled.

a.

Constant velocity of 40m = 4m/s

constant velocity of
$$\frac{-60m}{20s} = -3m/s$$

First 5 sec velocity is 2er 5-10sec velocity is $\frac{-Sm}{ssec} = -1 m/s$ 10-20sec velocity is $\frac{sm}{10sec} = 0.5m/s$

5 05-5 10 15 20 time (s) 4. Match the following velocity time graphs with corresponding position time graphs.

constant positive velocity		
slows to stop	A:	
time D	tine tine	
from the constant velocity from the constant velocity time	B:	
accelerating in negotive direction	C: roitised +ise	
d) constant positive velocity Transfant negotive velocity	D: Voitised	
e) Storts with rositive velocity time to stop accelerates	E:	
in negative disection		

Name:

5. Consider the velocity time graph shown.

a. What is the velocity of the object at t=2?

b. What is the velocity of the object at t=14?

these can be read directly from the groph

c. What is the acceleration of the object between times t=0 and t=4?

$$a = \frac{\Delta v}{\Delta +} = \frac{8m/s}{4sec} = 2m/s^2$$

d. What is the acceleration of the object between t=4 and t=12?

$$Q = \frac{\Delta v}{\Delta + 1} = \frac{-5n/s - 8n/s}{12 \text{ Sec} - 4 \text{ sec}} = \frac{-13m/s}{8 \text{ sec}} = -1.625 \text{ m/s}^2$$
e. What is the acceleration of the object between t=12 and t=16?

e. What is the acceleration of the object between t=12 and t=16?

$$a = \frac{\Delta v}{\Delta +} = \frac{O}{4} = O m/s^2$$

f. What is the acceleration of the object between t=16 and t=20?

$$Q = \frac{\Delta V}{\Delta +} = \frac{3 \, \text{m/s}}{4 \, \text{sec}} = 0.75 \, \text{m/s}^2$$

Don 7

Name:_____

Consider the velocity time graph shown.

a. A student claims the object is stationary between t=t and t=10. What mistake do you think they made?

They probably were thinking it was a position time graph

b. When is the object not moving?

A+ += 14 (v=0 then)

c. During what time periods is the object moving with constant velocity?

Between t=5-t=10 | this is when v=18-t=20 | the is when v=18-t=20 | the is when v=18-t=20 | the is and v=18-t=20 | the is is when v=18-t=20 | the is when v=18-

d. During which time periods is the object moving in the positive direction?

Any time velocity is positive, +=0 - += 14

e. During which time periods is the object accelerating in the positive direction?

Any time slope of the groph is positive

- 7. Consider the velocity time graph shown.
 - a. What is the velocity of the object throughout this graph?

3m/s

b. What is the total displacement of the object during the time shown on the graph?

Displacement = Area between x-oxis and line = (3m/s)(10s) = (30m)

- 8. Consider the velocity time graph shown.
 - a. What is the acceleration of the object throughout the graph?

 $\Delta = \frac{\Delta v}{\Delta t} = \frac{4}{10} = 0.4 \text{m/s}^2$

b. What is the total displacement of the object during the time shown on the graph?

Displacement = Area between x-axis and line

Area of triangle = basex height

2

Name:

9. Consider the velocity time graph shown.

a. What is the acceleration of the object between t=0 and t=5?

$$a = \frac{\Delta v}{\Delta +} = \frac{4 \, \text{m/s}}{5 \, \text{sec}} = 0.8 \, \text{m/s}^2$$

b. Describe the motion of the object between t=5 and t=7.

At rest, velocity is zero

c. Describe the motion of the object between t=7 and t=10.

Constant velocity of -2m/s

d. What is the total displacement of the object?

Section 1 = triangle

A = bh = 5secx - 4m/s Displacent = 0

A = 2xw

- 4secx - 2n/s + -8m

Name:____

10.

 $\Delta = \frac{10m/s}{s_{sec}}$ $= 2m/s^{3}$

a. Fill in the blanks:

The object starts with a velocity of $\underline{}$ m/s. It accelerates at $\underline{}$ m/s² for $\underline{}$ seconds until it has a velocity of $\underline{}$ m/s. It continues at that velocity for the rest of the time.

b. Determine the total displacement of the object.

$$A = triange$$

$$\frac{bxh}{2} = \frac{Ssec \times 10m/s}{2}$$

$$Total = 25m + 25m + 75m$$

$$= (125m)$$

Name:_____

11.

a. A student claims that during the first 5 seconds the object will have a displacement of $5 \times 80 = 400$ m. Why is that incorrect?

Velocity is not in m/s

b. What are the units that the calculation should be in?

5 sec x 80 km = 400 sec · km

c. Determine the actual displacement in metres during the first 5 seconds.

 $\frac{1}{100} \frac{\sec \cdot kn}{kn} \times \frac{1}{3600see} \times \frac{1000n}{1kn} = \frac{111n}{111n}$

d. What is the total displacement during the whole graph?

400+75+250+500=1225 sec. km

1225 <u>sec km</u> × 1 hr × 1000m = 340m