Potential Energy

Potential energy is energy that is Stored

For example:

The type of potential energy we will most focus on is gravit of pienel.

This is the energy which is stored due to being at a height above a reference point.

Gravitational potential energy =

Example: A 2.0 kg object sitting on a table 1.0 m above the floor is lifted 0.5 m. How much gravitational potential energy does it have

a) With respect to the table

$$3 \frac{3 \frac{49.8 + 12 \times 0.5}{12}}{1.8 \frac{4.8 \times 0.5}{12}} = 4.8 \text{ J}$$

b) With respect to the floor

Example: What is ΔE_p when a 50 kg object is dropped from a height of 20m to 10m?

Practice:

1. How much gravitational potential energy does a 1500 kg car have if a hoist lifts it up to a height of 2.0 m above the floor?

$$E_{p} = mgh$$

= 1500 K₁ × 9.8 m₃ × 2.0 m
= 2.9 × 10 J

2. A book of mass 1.2 kg drops from a height of 2.6 m to a height of 0.4 m. What is the value of Δ Ep?

$$\Delta E_{e} = E_{eff.nd} - E_{e}$$
 intial = mgh_e - mgh;
= 4.7 - 30.6 = mg(h_f-h_i)
= -26J

3. It takes 90J of work to lift an object to a height of 1.2m. What is the mass of the object?

$$-1.2m$$
 $W = Fd = Fgd$

$$= mgd$$

$$V = mgd$$

$$V = mgd$$

$$V = m.9.8.1.2$$

Kinetic Energy

Kinetic Energy is the energy of ______. The faster an object is moving the more energy it has.

Note that energy is not a vector, it does not matter what direction the object is moving.

Example: A 2.0 kg object is moving at 25 m/s. How much kinetic energy does it have?

$$E_{K} = \frac{1}{2}(2kq)(25m)^{2} = 625J$$
 $\Rightarrow 630J$

Example: What is the mass of an object if it has 250 J of kinetic energy and is moving at 5.0m/s?

$$\frac{E_{k} = \frac{1}{2}m^{2}}{3E_{k}} = m \frac{2(250)}{(5.02)^{2}} = 20kg$$

Example: What is the velocity of an object if it has 5600 J of kinetic energy and has a mass of 29kg?

$$\frac{E_{K}=\frac{1}{2}mV}{2E_{K}=mV} \pm \frac{2\times 5600}{29}$$

$$\frac{2E_{K}=V}{m} = \frac{19.65m/5}{m}$$

Practice:

1. A 14 object is moving at 276 m/s. How much kinetic energy does it have?

2. What is the velocity of an object if it has 840 J of kinetic energy and has a mass of 29kg?

3. What is the mass of an object if it has 195 J of kinetic energy and is moving at 2.5m/s?

Conservation of Energy

A fundamental Iqw of the universe is the law of conservation of energy:

Energy con not be crepteda nor destroyed, only change forms.

Give an example of a technology which transforms energy from:

Electrical energy into kinetic energy: Electric mater

Electrical energy into light energy:

Chemical energy into kinetic energy:

Riding a bike

Chemical energy into electrical energy:

Battery

Example: A 20.0 kg rock is dropped from a height of 5.0m. It hits the ground at 8.5 m/s. How much heat energy was generated?

Ex at end = $\frac{1}{2}mv^2 = 722.5J$ Ex at end = 0

 $E_{\text{next}} = 980J - 722.5J = 260J$

8

Thermal Energy	
Thermal energy is the	of the molecules and atoms in a substance
As a substance "heats up" the molecules and atoms that make up the substance move and vibrate more, thus increasing their kinetic energy.	
Temperature is thekin	etic energy of a substance.
Thermal energy, like all energy is measured in	
Temperature is measured in degrees Fahrenheit or Celsius or in Kelvin.	
Kelvin is based on absolute zero which is the lowest	possible temperature, at OK there is
•	

Specific Heat Capacity

0 K = _____°C

The amount of energy needed to raise the temperature of a substance depends on the chemical structure of that substance. For instance, if you applied 5000 J of heat energy to 1kg of water, copper iron or concrete.