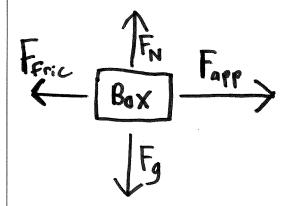
Force

A force is simply any push or pull
The unit of force is Newton (N)

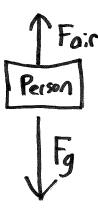
It is believed there are only 4 fundamental forces:

1. Gravity	2.	Strong	Nuclear
3. Electro magnetic	Some	Weok	Nuclear

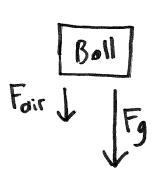
For example, if I push a chair this is really <u>electromagnetic</u> force at a fundamental level. In practice, it is useful to differentiate forces as we experience them.


Some forces we will deal with in this course:

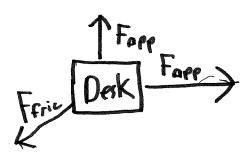
Force	Description
F	Force of Grovity = weight
Face	Applied Force
Ffric	Friction -> Always against motion
FN	Normal Force > Prevents objects passing
	Tension > Force acting along a rape
E	Elastic Force -> springs
Fair	Air resistance > like friction

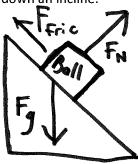

Free body diagrams

Free body diagrams show the _____ which affect an object. Arrows point in the direction the force acts; length of the arrows reflects the magnitude of the force.


A box is pushed along a rough floor.

A sky diver is falling towards to Earth.


A ball which has just been thrown is travelling upwards


The thrown ball falls back downwards.

A very strong person pushes a desk East while a weaker person pushes the desk North.

A ball rolls down an incline.

Newton's First Law

Newton's 1st Law states: An object in motion will Stay in motion and an object at rest will stay at rest unless acted upon by an external force.

This is also called the Law of inertia

Tendency for objects to resist changes in their motion, related to mass

Another way of stating Newton's 1st law is that if an object has **bolonies** forces acting upon it, it will have constant velocity (if it is not moving it has constant velocity of 0)

Consider a book sitting on a desk, since it is not accelerating the normal force must be ________ to the force of gravity.

Consider a box being pushed at constant velocity, since it is not accelerating, the applied force must be **equal** to the force of friction.

Consider a book sitting on the seat of a car, you hit the breaks and the book flies forward, why?

No force acting to slow book

Newton's Second Law

Newton's second law deals with what happens when forces are unbalanced. It states that an object's acceleration will be in the direction of the net force and will depend on the mass of the object.

Heavier objects require ______ force to accelerate them.

Lighter objects require ______ force to accelerate them.

The key equation is:

Fret = ma < acceleration

sum of all forces

This equation gives us the definition of the Newton:

Newtons = $\frac{Kg \cdot M}{s^2} = \frac{Kq \cdot M}{s^2}$

A 5.0 kg block is pushed to the left with a force of 10.0 N. What is its acceleration?

Fret = ma

 $\frac{F_{net}}{m} = a \qquad \Rightarrow \frac{10.0 \,\text{N left}}{5.0 \,\text{kg}} = 2.0 \frac{\text{N}}{\text{kg}} \,\text{left}$

A 650 kg car accelerates at 4.0 m/s² South. What is the net force acting on it?

Fret = MA = 650 kg × 4.0 m South = (2600 N South) Two people push a 50.0 kg block, one pushes to the left with a force of 56 N, the other pushes to the right with a force of 89 N. What is the net force acting on the block? What is the acceleration of the block?

Fret = Winners - losers
$$= 89N - 56N$$

$$= 33N \text{ right}$$

$$a = \frac{F_{net}}{m} = \frac{33N}{50.0 \text{ kg}} = 0.66 \text{ m} \text{ right}$$

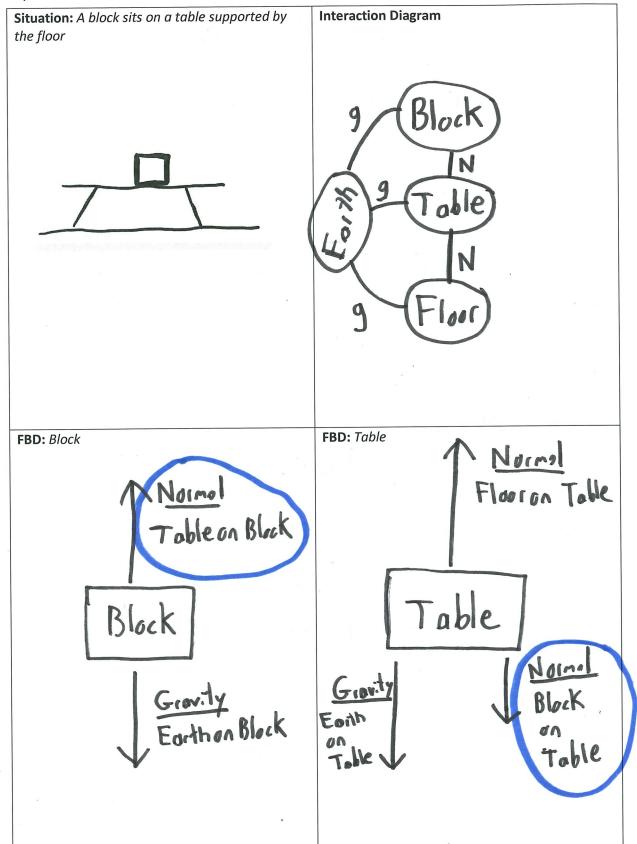
Two people push a 750 kg truck, one pushes with a force of 65 N right, the other with a force of 79 N left. What is the net force acting on the truck? What is the acceleration of the truck?

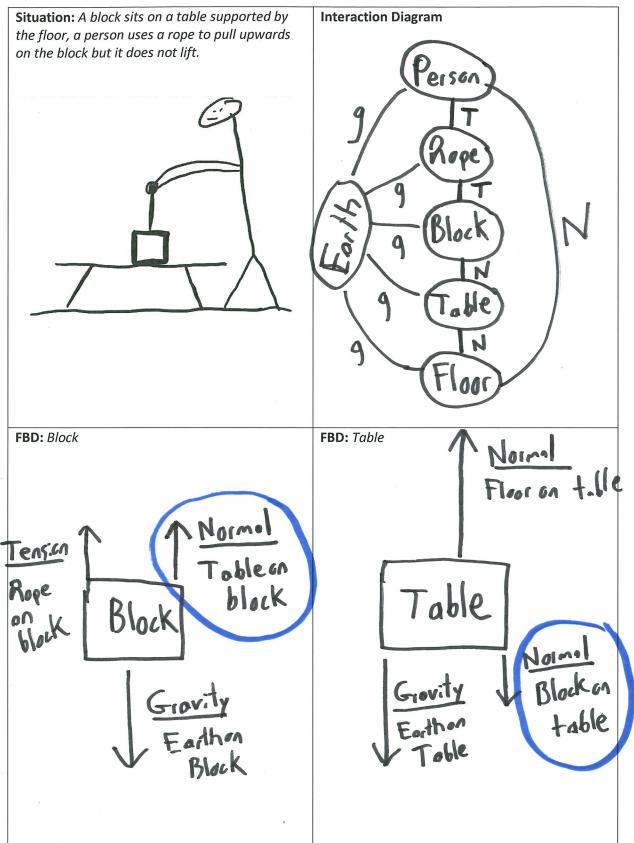
$$\begin{array}{c}
79N \\
\hline
750
\end{array}$$

$$\begin{array}{c}
F_{net} = \text{Winners-losers} \\
= 79N - 65N \\
= 14N \text{ left}
\end{array}$$

$$0 = \frac{F_{net}}{m} = \frac{14N}{750kg}$$

$$- 0.019 \frac{m}{5^2} \text{ left}$$


Newton's Third Law


Forces come in ______, alike in type and magnitude but opposite in direction

If you push something it pushes back with equal force

What are the force pairs in each of the following situations?

A nail is hit with a hammer:	A book rests on a table:
Fhammer on noil Fnoil on honner	Feorly on book From Earth
	Flook on toble

